6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

AUTOMATIC PROGRAMME SYNTHESIS

Gregor Kandare

Department of Systems and control
Jozef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

Abstract: This article is dealing with the chaljenof automating the
software development process from user requiremerpsogramme code.
The first part of the process — building a modehirrequests tends to be
quite a difficult for the computer to handle it.&heason for this is that the
requests are most often given in a natural languadech is full of
ambiguities. Considering fact that the models arestiy formal,
automating the second part — translation of mouhts code results to be
feasible with computers.

Keywords: Code generation, process control, segalamntrol.
1 Introduction

Modern control systems cover an ample set of functions and enclosadcdet of
hardware devices, ranging from simple sensors and actuatotsplters to complex
computer systems. Consequently, control software is becoming evercomopex
and difficult to develop and maintain. In the process control domain, ¢éxests a
broad spectrum of software like e.g. software for digital Ribtrollers, fuzzy logic,
batch process control software, scheduling, supervision and faetttidat software,
etc.. The issues regarding control software are manifold ([8]thé first place,
control software has to be reliable ([10]). Control softwar@m®ngst others used in
extremely critical applications such as control systems oeau@ower plants and
airplanes. Failures in such systems can cause ecologicaledssand loss of lives.
Another issue is complexity of control software systems. In otdecope with
complexity, a systematic approach to the software development has to be undertake
As mentioned above, there exist various very diverse types of coofitalase.
However, in this article we limit ourselves to a small sulosghem - software for
procedural control of continuous processes controlled by programmable logic
controllers. Beside batch processes, continuous processes are mosbncamm
chemical industry. Design of batch process control systems andthaimisation is
well covered by the ISA S88 standard. There also exist varmftigase tools for
batch process control. In the domain of continuous processes this isencade,
which leaves many things to be done in this field.

Several solutions for tackling the problems of programmable logicatlamtsoftware
development have been proposed in the literature ([1],[3],[6],[9],[10. Sblutions

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

are mainly based on lifecycle view of software. Accordinghie view, software is
considered as any other product, which undergoes various stages ofoevoluti
throughout its creation and application. Consequently, the process of reoftwa
development and use (evolution of a software product) can be dividedaneral
phases of the lifecycle. The software lifecycle usuallytstaith a requirements
definition phase and terminates with operation and maintenance phdses.
intermediate phases are development phases of the product, which tathée
divided into modelling and realisation phases. In the modelling phastsae
engineering methods and tools for analysis and design are useelliMpthnguages
such as UML represent the methods and computer automated softwareeeing
tools (CASE) are used as tools.

An important issue in procedural control software design procedsoighe choice of
appropriate computer automated software engineering tools (CABEE tools play
the same role in software development as CAD/CAM (Computer dAide
Design/Computer Aided Manufacturing) play in development of other prodLicgés
main objective of CASE tools is to automate the development phasastefre
lifecycle and transitions between the phases. Thus, CASE tools suggsign,
editing, consistency and correctness checking as well as savthgegieval of
graphical and textual models of software. Last, but not least, ortbeofmost
important capabilities of CASE tools is that they can autonibticgenerate
programme code from the models. The most important advantages of auirdat
generation are that the mapping from model to final product requirésiman effort
and as good as no time. Another benefit is that due to automation ofagiEnm
process the probability of mapping errors decreases raditrallyis article, a process
of automatic code generation for PLCs is presented.

2 TheProcGraph modelling language

ProcGraph is a modelling language specialized for design of dauadeprocess
control software. A more detailed description of the language can be found in ([1]).
ProcGraph models consist of three types of diagrams, eachbdegai particular
view of the system to be built:
» Entity diagrams (<ED>)depict conceptual decomposition of the system as
well as relationships between conceptual components.
» State transition diagrams (<STD>Jescribe the dynamical view (behaviour)
of the conceptual components.
 Entity dependency diagram (<EDD>)ortrays causal and conditional
dependencies between the conceptual components.

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

3 Mapping of modelsto source code

In order to achieve seamless transitions between the develophasas of software
product, the abstractions (entities) used in the models of the sepaedes have to
be as similar as possible. In this manner, the effort neededafmition from one
phase to another is minimised.

ProcGraph modelling language is designed in such a manner that trisctadnss
match closely with the ones that appear in the problem domain (prat@docess
control). The modelling phase if followed by the programming (codpigse. As
regards to the freedom of choice of models and abstractions, phtss we are not
as free as we are in the phase of modelling. While in the nmglgdhase we can
design and adapt the modelling language so that it suits our needhe i
programming phase this is not feasible. The reason for thistiththamodel”, which
results from the programming phase, is actually programme soodeein one of the
programming languages. Programming languages have fixed syntaxraaditiss.
Furthermore, in the choice of the target programming languagarenenited by the
hardware platform.

In the case of programmable logic controllers, available pnogiag languages are
in the majority of cases the ones defined by the IEC 61131-3 stalfaror!
Reference source not found.). This standard defines five programming languages:
Ladder diagram (LD), Sequential function charts (SFC), Function bdibagram
(FBD), Structured text (ST) and Instruction list (IL). While thger two are textual,
the first three are both graphical and textual. Considering #mlsssness issues, the
most appropriate language for our purpose appears to be the Functiodibtram.
Its abstractions and their hierarchy match well with the attstns and hierarchy of
ProcGraph models. FBD diagrams are an extension of Ladder diagnah,was the
first language used in PLC programming. Programs in Ladderadinalgrok a lot like
electrical schemes with contacts and coils. Beside those mgmthe main
components of FBD programs are function blocks, which are “wigBther. Thus,
function blocks can be imagined as a kind of integrated circuits.

3.1 Definition of the mapping function

As we have seen in section 2, a ProcGraph model consists of tHezenditypes of
submodels (diagrams), which can be written as follows:

(ProcGraph=ED) +STD +EDD) (3.1)
Using expressionError! Reference source not found. and (3.1), we can define the
mapping function of ProcGraph models into Function block diagram language:

Cg: (ProcGraph — (FBD) (3.2)
The expression (3.2) is general and describes the transformatioe eftire model
into function block diagram source code.

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

4 Automatic code generation

Automatic code generation has gained in importance over the pase&s. It has
also been known under names such as model-based programming and mredel-dri
application development. The reason for this popularity is the Fett doftware
development companies have realised that manual programming is dimery
consuming and error-prone task. Moreover, if the software model builthdy
analyst/designer has sufficiently low abstraction level, therpnogiing itself is a
relatively mechanical task which can easily be taken over by the computer

In automating the programming process, costs of the programmangower can be
saved, development times can be significantly reduced and also thatashewrors

is decreased.

Automatic code generators resemble the compilers — they botliotrana model
from a higher level of abstraction to a model on a lower lef/@bstraction. In the
case of a compiler, the input model is the program source codéandtput model
the executable code. On the other hand, the objective of the code gemerat
transform the model made by the designer to the source code. The output model of the
code generator is therefore the input model of the compiler.

4.1 Automatic code generation from ProcGraph models

The process of conversion of software model to the end product of softwar
development — executable code, is shown in Figure 1.

Sour d Executable
ource code code
Model editor Code IEC 1131-3
Generator compiler

Figure 1: Conversion of software models into executable code

As noted in the preceeding section, we see that the input into thgeoelator is the
model (in our case ProcGraph model). On the output of the code gené&iBkbr
programme code is generated. A rough description of the code G@mgnacedure
is depicted in Figure 2. First, definitions of data structuresiated, subsequently
function blocks representing procedural control entities are gedeifarthermore, a
hierarchy of function blocks representing states is construotééirally, a definition
of global variables is performed.

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

DUT definitions

Gefinition of global variableg
[Generation of procedural entities F%
. *
Generatlon of states Fla

Generation of global resource sectioD

®

Figure 2: The automatic code generation algorithm

Each step of the algorithm from the Figure 2 is further decomposedore atomic
procedures which finally in atomic actions.

The code generator creates a text file that describes bothrapkiaal as well as
textual segment of the source code in function block diagram. Qe graphical
part of the code is a more demanding task, because issues suctemseplt of
elements in the scheme and routing of connections have to be taken into account.

5 Conclusions

Control software development for programmable logic controllers be@eme a
demanding task due to the ever increasing complexity of controlled processe®and als
due to low abstraction level of the PLC programming languagespiidggamming
process is time-consuming as well as extremely error-paome consequently
consumes a lot of manpower resources. In section 3 of thikeasecshow that the
rules of the model to program code conversion can be precisehedeind hence
automated. This can be done by implementing a domain-specific gmukrator
(synthesizer). The code generator uses code patterns, whthca@isributes to
standardization and reusability of the generated code. In the codatgenerocess,
the appropriate patterns are used and filled with the correspocwiment. The most
important advantages of automatic code generation are evidemificaig reduction

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

of software development time and consequential cost reduction, impnoverhe
guality and therewith reliability of software.

References

[1] G. Godena, “ProcGraph: a procedure-oriented graphical notatiomdoegs-
control software specificationControl Engineering Practicevol. 12, pp. 99-
111.

[2] G. Kandare, G. Godena and S. S#nrk, “A new approach to PLC software
design”

[3] Bonfatti, F., G. Gadda and P.D. Monari: Re-usable Software Design for
Programmable Logic ControllerBroceedings of the workshop on Languages,
Compilers & Tools for Real-Time Systems (LCT-RTS 19896)31-40, La
Jolla, California, Junij 1995.

[4] Booch, G., J. Rumbaugh, I. Jacobsdhe Unified Modeling Language User
Guide Addison Wesley, Boston, 1999.

[5] Chirn, J.-L. and D.C. McFarlane: Petri Nets Based Design of Ladoigc
Diagram,Proceedings of the UKACC International Conference on CONTROL
2000 University of Cambridge, UK, 2000.

[6] Davidson, C.M., J. McWhinnie and M. Mannion: Introducing Object Oriented
Methods to PLC Software DesignProceedings of the International
Conference and Workshop: Engineering of Computer-Based Systems (ECBS
'98), str. 150-157, Jerusalem, Izrael, Marec-April 1998.

[7] Dierks, H. und J. Tapken: MOBY/PLC: Eine graphische
Entwicklungsumgebung fur SPS-Programmeitomatisierungstechnikyol.

49, No. 1, str. 38-44, Januar 2001.

[8] Edan, Y. and N. Pliskin: Transfer of Software engineering Toadsn fr
Information Systems to Production SystenmSpmputers & Industrial
Engineering Vol. 39, No.1, str. 19-34, Februar 2001.

[9] Fischer, K. und BVogel-Heuser: UML in der Automatisierungstechnischen
Anwendung — Starken und Schwaché&mtomatisierungstechnische Praxis,
Vol. 44, No. 10, str. 63-69, Oktober 2002.

[10] Frey, G. and L. Litz: Formal methods in PLC programmbPigaceedings of

the IEEE Conference on Systems Man and Cybernetics SMCs20@%.31-
2436, Nashville, Oktober 2000.

